

Welcome to pelecanus’s documentation!

Contents:

	pelecanus
	Project Goals

	How to Use

	Enumerate

	Getting and Setting Values

	Keys, Values, Items, etc.

	Turning it back into a plain dictionary or JSON

	Searching Keys and Values

	Find and Replace

Indices and tables

	Index

	Module Index

	Search Page

pelecanus

A Python3 application for navigating and editing nested JSON, named ‘pelecanus’ after Pelecanus occidentalis, the brown Pelican of California and the Eastern Pacific [http://www.nps.gov/chis/naturescience/brown-pelican.htm], which is a wonderful bird, but also named such because I got tired of writing “NestedJson”.

This application has been built-for and tested on Python3.3 and Python3.4.

Project Goals

Often, it’s necessary to explore a JSON object without knowing precisely where things are (in the case of Hypermedia, for example). By creating a recursive data structure, we can facilitate such tasks as retrieving key-value pairs, iterating through the data structure, and searching for elements in the data structure.

How to Use

To install for Python3.3+, simply do:

$ pip install pelecanus

pelecanus offers PelicanJson objects, which are nested dictionaries created from valid JSON objects. PelicanJson objects provide a few methods to make it easier to navigate and edit nested JSON objects.

To create a PelicanJson object, you can pass the constructor a Python dictionary created from a JSON dump (or a simple Python dictionary that could be a valid JSON object):

>>> content = {'links': {'alternate': [{'href': 'somelink'}]}}
>>> from pelecanus import PelicanJson
>>> pelican = PelicanJson(content)

Enumerate

Once you have a PelicanJson object, probably one of the most useful things to do is to find all the nested paths and the values located at those paths. The enumerate method has been provided for this purpose:

>>> for item in pelican.enumerate():
... print(item)
(['links', 'alternate', 0, 'href'], 'somelink')
...

In JSON, only strings may be used as keys [(see JSON spec)](http://json.org/), so the integers that appear in the nested path represent list indices. In this case, [‘links’, alternate’, 0, ‘href’] actually represents:

1. A dictionary with a key `links`, which points to...
2. Another dictionary which contains a key 'alternate', which contains...
3. A list, the first item of which...
4. Is a dictionary containing the key `href`.

enumerate, like most methods in a PelicanJson object, returns a generator. If you want just the paths and not their associated values, use the paths method:

>>> for item in pelican.paths():
... print(item)
['links', 'alternate', 0, 'href']

Getting and Setting Values

You can retrieve the value from a nested path using get_nested_value:

>>> pelican.get_nested_value(['links', 'alternate', 0, 'href'])
'somelink'

If you want to change a nested value, you can use the set_nested_value method:

>>> pelican.set_nested_value(['links', 'alternate', 0, 'href'], 'newvalue')
>>> pelican.get_nested_value(['links', 'alternate', 0, 'href'])
'newvalue'

If you attempt to set a nested value for a path that does not exist, an exception will be raised:

>>> pelican.set_nested_value(['links', 'BADKEY'], 'newvalue')
Traceback (most recent call last):
...
KeyError: 'BADKEY'

However, you can create a new path and set it equal to a new value if you pass in force=True when you call set_nested_value:

>>> pelican.set_nested_value(['links', 'BADKEY'], 'newvalue', force=True)
>>> pelican.get_nested_value(['links', 'BADKEY'])
'newvalue'

Because integers will always be interpreted as list-indices, this works for creating ad-hoc lists or adding elements to lists, but be advised: when setting a new path with force=True, a PelicanJson object will back-fill any missing list indices with None (simliar to assigning to a non-existent array index in Ruby [http://www.ruby-doc.org/core-2.1.2/Array.html#method-i-5B-5D-3D]):

>>> new_path = ['links', 'NewKey', 4, 'NewNestedKey']
>>> pelican.set_nested_value(new_path, 'LIST Example', force=True)
>>> pelican.get_nested_value(new_path)
'LIST EXAMPLE'
>>> pelican.get_nested_value(['links', 'NewKey'])
[None, None, None, None, {'NestedKey': 'LIST EXAMPLE'}]

In this example, the PelicanJson object found the integer and realized this must be a list index. However, the list was missing, so it created the list and then created all of the items at indices before the missing index, at which point it inserted the missing item, a new object with the key-value pair of NewNestedKey and LIST EXAMPLE. If unexpected, this behavior could be kind of annoying, but the goal is to force the path into existence and expected path is now present.

Keys, Values, Items, etc.

A PelicanJson object is a modified version of a Python dictionary, so you can use all of the normal dictionary methods, but it will mostly return nested results (which means you will often get duplicate keys). The length of the object too will be based on all the nested keys present:

>>> list(pelican.keys())
['links', 'attributes', 'href']
>>> len(pelican)
3

values is only going to return values that exist at endpoints, which are the inside-most points of all nested objects, leaves in the tree, in other words:

>>> list(pelican.values())
['somelink']

While items attempts to do double-duty, returning each key in the tree and its corresponding value:

>>> list(pelican.items())
[('links', <PelicanJson: {'attributes': [<PelicanJson: {'href': 'somelink'}>]}>), ('attributes', [<PelicanJson: {'href': 'somelink'}>]), ('href', 'somelink')]

You can also use in to see if a key is somewhere inside the dictionary (even if it’s a nested key):

>>> 'attributes' in pelican
True

Turning it back into a plain dictionary or JSON

Other useful methods include convert and serialize for turning the object back into a plain Python dictionary and for returning a JSON dump, respectively:

>>> pelican.convert() == content
True
>>> pelican.serialize()
'{"links": {"attributes": [{"href": "somelink"}]}}'
>>> import json
>>> json.loads(pelican.serialize()) == content
True

Searching Keys and Values

You can also use the methods search_key and search_value in order to find all the paths that lead to keys or values you are searching for (data comes from the Open Library API [https://openlibrary.org/developers/api]):

>>> book = {'ISBN:9780804720687': {'preview': 'noview', 'bib_key': 'ISBN:9780804720687', 'preview_url': 'https://openlibrary.org/books/OL7928788M/Between_Pacific_Tides', 'info_url': 'https://openlibrary.org/books/OL7928788M/Between_Pacific_Tides', 'thumbnail_url': 'https://covers.openlibrary.org/b/id/577352-S.jpg'}}
>>> pelican = PelicanJson(book)
>>> for path in pelican.search_key('preview'):
... print(path)
['ISBN:9780804720687', 'preview']
>>> for path in pelican.search_value('https://covers.openlibrary.org/b/id/577352-S.jpg'):
... print(path)
['ISBN:9780804720687', 'thumbnail_url']

In addition, pluck is for retrieving the whole object that contains a particular key-value pair:

>>> list(pelican.pluck('preview', 'noview'))
[<PelicanJson: {'preview': 'noview', 'thumbnail_url': 'https://covers.openlibrary.org/b/id/577352-S.jpg', 'bib_key': 'ISBN:9780804720687', 'preview_url': 'https://openlibrary.org/books/OL7928788M/Between_Pacific_Tides', 'info_url': 'https://openlibrary.org/books/OL7928788M/Between_Pacific_Tides'}>]

Find and Replace

Finally, there is also a find_and_replace method which searches for a particular value and replaces it with a passed-in replacement value:

>>> for path in pelican.search_value('https://covers.openlibrary.org/b/id/577352-S.jpg'):
... print(path)
['ISBN:9780804720687', 'thumbnail_url']
>>> pelican.find_and_replace('https://covers.openlibrary.org/b/id/577352-S.jpg', 'SOME NEW URL')
>>> pelican.get_nested_value(['ISBN:9780804720687', 'thumbnail_url'])
'SOME NEW URL'

This can, of course, be dangerous, so use with caution.

Index

 nav.xhtml

 Table of Contents

 		Welcome to pelecanus's documentation!

 		pelecanus

 		Project Goals

 		How to Use

 		Enumerate

 		Getting and Setting Values

 		Keys, Values, Items, etc.

 		Turning it back into a plain dictionary or JSON

 		Searching Keys and Values

 		Find and Replace

_static/comment-bright.png

_static/comment-close.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

